
International Journal of Scientific & Engineering Research Volume 9, Issue 2, February-2018                                                                                           340 
ISSN 2229-5518  
 

IJSER © 2018 
http://www.ijser.org 

Free Vibration Analysis of Timoshenko Beam 
Using Energy Separation Principle 

 
Prof. N. N. OSADEBE, Prof. J. C. AGUNWAMBA, Dr. M. E. ONYIA and E. O. ROWLAND-LATO 

 
Abstract 
 
This paper proposes a model for the free vibration analysis of Timoshenko beam in which the finite element method is applied in conjunction with the 
energy method. The Timoshenko beam is divided into two virtual beams, namely Euler-Bernoulli beam and shear layer beam. The proposed analytical 
relationship between bending and shear rotations of the Euler-Bernoulli beam is established through the use of a bending-shear rotation interdependent 
factor.  
The results show high accuracy and efficiency of the proposed element in calculating the natural vibration frequencies of beams with different support 
conditions. It is concluded that the effect of shear deformation is significant in beams whose span-to-depth ratio is less than 5, and should therefore be 
accounted for in their design. 
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1 INTRODUCTION 

The failure of major structures such as bridges, high-rise 
buildings and airplane wings is an awesome possibility 
under resonance. Thus the calculation of element natural 
frequencies is of major importance in the study of vibration 
of beams. The Euler Bernoulli beam theory, sometimes 
called the classical beam theory, is the most commonly 
used because it is simple and provides reasonable 
engineering approximations for many problems. Doyle and 
Pavlovic [1] and G¨urg¨oze [2, 16] obtained the frequency 
equation of a clamped-free Bernoulli–Euler beam with 
attached tip mass and a spring-mass system by using the 
Lagrange multipliers method. However, the Euler-
Bernoulli model tends to slightly overestimate the natural 
frequencies, especially the natural frequencies of higher 
modes. 
The extension of Euler-Bernoulli beam theory is the 
inclusion of the effect of rotary inertia, known as Rayleigh's 
theory. Early investigators such as Bapat and Bapat [3] 
investigated the natural frequencies of an Euler beam with 
concentrated masses. Other researchers such as Chang [4] 
solved a simply-supported Rayleigh beam carrying a 
rigidly-attached centred mass. It partially corrects the 
overestimation of natural frequencies in the Euler-Bernoulli 
model. 
Timoshenko’s theory includes the shear effect on the 
vibration of beam. The superiority of the Timoshenko 
model is more pronounced for beams with a low aspect 
ratio. Due to the complexity of the governing equations of 
free vibrations of beams in general, numerical methods 

such as finite element methods have been developed 
profoundly.  The major issue with finite element 
formulations for Timoshenko beams is that when span-to-
depth ratio of the beam is low strong stiffening of the 
elements occurs, resulting in spurious shear stress 
predictions and erroneous results for the generalized 
displacements, [5, 17]. This phenomenon is known as shear-
locking.  

The usual engineering practice to neglect the secondary 
effects such as rotary inertia and transverse shear in 
calculating the natural frequencies may be justified to some 
extent for slender beams, at best for few first modes. In this 
case, the influence of the secondary effects is small. 
However, for stocky beams the secondary effects become 
more important, especially for higher modes. 

In this paper, a unified beam element model of the Euler-
Bernoulli and Timoshenko beam theories is proposed for 
the free vibration analysis of Timoshenko beams. 
 
2 FORMULATION OF BENDING-SHEAR 

INTERACTION FACTOR 
 
In formulation of the interpolation function, the beam 
deflection w is divided into two components; that due to 
the flexure, wb, and that due to transverse shear, ws. The 
angle of rotation of the cross-section θ is divided into its 
constitutive parts; the angle of cross-section rotation due to 
bending, bθ and the cross-section slope due to shear, sθ  
 (see Figure 1b). 
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To ensure continuous interaction between the bending and 
shear components as a function and avoid the use of partial 
derivatives, the following relationship for the total cross 
sectional rotation θ is proposed, [6]: 
 

)()1()()( xsxbx θββθθ −+=                                         (1) 

 
where )(xθ is the total cross-sectional rotation of the beam 

)(xbθ  is the cross-sectional rotation of the Euler-Bernoulli 

beam 
)(xsθ is the cross-sectional rotation of the shear beam 

β  is the bending-shear interaction factor  and is expressed 
as the ratio of bending strain energy to total strain energy of 
a simply-supported beam under load. 
That is: 
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sUbU
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where  Φ = 
bU
sU

 

bU  = strain energy in bending deformation 

sU  = strain energy due to shear deformation 

The integral expression for bending strain energy is given 
by the familiar expression: 
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                                      (3) 

where E is the elastic modulus of the beam material. 
I = moment of inertia of the beam section. 
 
Consider a simply supported beam with a point load P at 
midspan. 
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Figure 1a – Beam element 

Figure 1b – Kinematics of a beam undergoing both bending and shear rotations IJSER
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                               Figure 2- A simply supported beam under a point load P at the center 

 
 
The bending moment at a section, distance x from a 

support, is given by: 

2
)(

Px
xM =  , x<L/2   and 








−−=
22

)(
L

xP
Px

xM  , x>L/2 

                                                         (4) 

Since the maximum bending moment occurs at midspan 
(x=L/2),  

2
)(

Px
xM =  

Substituting for )(xM in Equation (3) and performing 
integration gives 

∴
EI

LP
bU

96

32
=               (5) 

The shear force at any section, distance x from a support, is: 

2
)(

P
xQ =                                            (6) 

The integral expression for shear strain energy is given by 
the familiar expression 

dx
L

kAG
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                          (7) 

Substituting for )(xQ in Equation (7) gives the shear strain 
energy as: 
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=                              (8) 
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2
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(9) 

where E= Young’s modulus 
G = shear modulus 
A = cross-sectional area 
k = shear coefficient depending on the shape of cross-
section . 
 
Edem [5] proposed that the bending-shear interaction 
factor, β , be based on the value of Φ  for midspan point 
load, i.e. Equation (9). 
 

 

 

 
3 FORMULATION OF INTERPOLATION 

FUNCTIONS 
 
Hermite cubic polynomial is used to approximate the 
flexural deformation, ( )xbw  :[6, 7]  

( ) 3
4

2
321 xaxaxaaxbw +++=                          (10) 

2
43322

)(
)( xaxaa

dx

xbdw
xb ++==θ  

The generalized nodal displacements for the Bernoulli 
beam are defined as bw and bθ . 

( ) ( ) iu
i

xixbw ∑
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where ’s are given as 
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and denotes the column displacement vectors 

{ }T
bbbb ww 2211 ,,, θθ  

 
The Interpolation Function for shear deformation ( sw ) is 

approximated using a quadratic polynomial: [6, 7] 
2

3211)( xbxbbxsw +++=            (13) 

xbb
dx

xsdw
xs 3221

)(
)( ++==θ   

The generalized nodal displacements for the shear beam 
are defined as sw and sθ . 
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where ’s are given as 
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and denotes the column displacement vectors { }T
ssss ww 2211 ,,, θθ  

 
 

 

4  FORMULATION OF TIMOSHENKO BEAM 
ELEMENT STIFFNESS MATRIX 

 

The expression for strain energy in the proposed unified 
beam element is obtained by integrating the expression for 
strain energy per unit length of the beam. 
 
The total energy in the unified beam element under a 
distributed normal load q is in form of: [8, 9] 
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ϕθ   for the flexural beam               (17) 

∑
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i iuxixs ηθ   for the shear beam      (18) 

From Castigliano’s first theorem, the stiffness coefficient Kij 
is given by:  [18, 20] 
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where 2

2

dx
id

i
ϕ

ϕ =  and 2

2

dx
id

i
η

η =   

 
The assembled unified beam element stiffness matrix K is

{ }u

iη

{ }u
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5 BEAM ELEMENT MASS MATRIX 
 
The kinetic energy of a particle of density ρ and cross 
sectional area A within a beam element moving with 
velocity, v, is given by: [9, 19] 

 

                                                                  (22) 

 

 

 
The element velocity field can be approximated by the 
shape functions: [10, 11] 
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Substituting Equation (24) into Equation (23): 

For the beam element, the total kinetic energy kU is 
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The mass coefficient Mij is given by [9, 19] 
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where the 𝜑𝑖′𝑠 and η
𝑖
′𝑠 are given by Equations (12) and 

(15) and 
𝜑11= 𝜑1x 𝜑1, 𝜑12= 𝜑1x 𝜑2, etc 
η

11
= η

1
x η

1
,  η

12
= η

1
x η

2
, etc 

 

Substituting dxij∫ ϕ and dxij∫η into Equation (26), the beam 

element mass matrix is shown to be: 
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6 BEAM ELEMENT ROTARY INERTIA MATRIX 
 
The total kinetic energy due to rotation of the cross-section 
during bending is given by: [19] 
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But the rotation of the cross-section is given by: 
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Substituting for θ  in Equation (28) gives: 
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The rotary inertia coefficient Rij is given by: [18, 21] 

kiU
juiuijR

∂

∂

∂

∂
=

        

 

( ) dxiu
i

xi
L

x
I

juiu
dxiu

k
xi

L

x
I

juiu

24

1
)(1

02

1224

1
)(

02

12











 ∑

=
−∫

=∂∂

∂
+∑

=
∫
=∂∂

∂
= ηβρϕβρ   

 

( ) dxxjxi
L

x
Idxxjxi

L

x
IijRei )()(

0
1)()(

0
.. ηηρβϕϕρβ  ∫

=
−+∫

=
=  

                                                                                                                                                               (31) 
 

where
dx

id
i

ϕ
ϕ =  and 

dx
id

i
η

η =  

 
 

and  ∫ ϕ
𝑖𝑗

𝐿
0 𝑑𝑥 = ∫

⎣
⎢
⎢
⎢
⎢
⎢
⎡ϕ 11 ϕ

12
ϕ

13
ϕ

14

ϕ
21

ϕ
22

ϕ
23

ϕ
24

ϕ
31

ϕ
32 

ϕ
33

ϕ
34

ϕ
41

ϕ
42

ϕ
43

ϕ
44⎦
⎥
⎥
⎥
⎥
⎥
⎤

 𝑑𝑥𝐿
0  

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 9, Issue 2, February-2018                                                                                           346 
ISSN 2229-5518  
 

IJSER © 2018 
http://www.ijser.org 

 
 
ϕ

11
= ϕ

1
x ϕ

1
, ϕ

12
= ϕ

1
x ϕ

2
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Substituting ∫ ϕ

𝑖𝑗

𝐿
0 𝑑𝑥  and ∫ η

𝑖𝑗

𝐿
0 𝑑𝑥  into Equation (31), 

the beam element rotary inertia matrix is shown to be: 
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7 GOVERNING EQUILIBRIUM EQUATIONS 
 
Consider a beam of uniform cross section made of 
homogenous isotropic material. 
The governing equation of dynamic equilibrium for an 
undamped structure is: 
 
[𝑀]�Ü� + [𝐾]{𝑈} = {𝐹𝑒𝑥𝑡}                                                         (33) 
   
where [M] is the Structure mass matrix 
 [K] is the Structure stiffness matrix 
 {𝑈} is the vector of the structural nodal 

displacements 
 {𝐹𝑒𝑥𝑡} is the vector of  nodal external forces 

 

2

2

dt

Ud
U =

   
is the acceleration of the material 

particles of the structure 
In free vibration, there is no external force and damping is 
zero. 
Therefore Equation (33) becomes: 
 
[𝑀]�Ü� + [𝐾]{𝑈} = {0}                                                             (34) 
 

It may be safely assumed that the free vibration motion is 
simple harmonic. [12, 22] 
 
i.e. {U}={𝑈�} sin(𝜔𝑡 + 𝜃)                                                   (35) 
 
{𝑈�} represents the amplitude of vibration, ω is the circular 
frequency and 𝜃 is the phase angle. 
 Therefore Equation (34) becomes 
 

[ ] [ ]( ){ } { }0ˆ2 =− UMK ω                                               (36)         
 
Equation (36) is an eigenvalue equation which gives 
nontrivial solution if the determinant of the coefficients of 

{ }Û  equals zero, i.e. 
   

[ ] [ ]( ) { }02det =− MK ω                                                    (37) 

The eigenvalues ( 22
3

2
2

2
1 ,.....,,, Nωωωω ) represent the 

frequencies of the N modes of vibration which are possible 
in the system. 
 
The structure mass matrix [M] in Equation (37) is equal to 
the sum of matrices due to element mass and rotary inertia. 
Substituting for [K] and [M] in Equation (37): 
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8 RESULTS AND DISCUSSION 
 
Consider the rectangular clamped-free beam problem by solved by Reddy [13, 14]  
 
 
 
 
 
 
 
 
 
 
 
 
Assumed parameters: Poisson’s ratio, v=0.25; shear 
coefficient, k=5/6 
The boundary conditions are 𝑤1 =  𝜃1= 0 
 
SolvingEquation (38) for a one-element mesh gives: 

( ) 







Φ++Φ+=

A

EI
L

ρ
λω 28483.586069.693240.94802.12  

                                                                    (39) 

where
2

3

7








=
L

d
λ

                                                              
(40) 

2
32

12








==Φ
L

d

GkAL

EI

                                                      (41)
 

(a) For L/d=100(slender beam),
A

EI
L

ρ
ω 252781.3=  

                                  (42) 
    

(b) For L/d=10 (deep beam),
A

EI
L

ρ
ω 25667.3=                                                                                               

               (43) 
Neglecting the effect of rotary inertia, Equation (39) reduces 
to: 

Figure 3 – Clamped-Free Beam 2

2
1 vU i

k Α= ρ  1w  

2 

L 

2w  2θ  x 
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







Φ+=

A

EI
L

ρ
ω 23240.94802.12                (44) 

Substituting 
2

3 







=Φ
L

d
into Equation (44): 

(a) For L/d=100 (slender beam),
A

EI
L

ρ
ω 25331.3=                                                        

     (45) 

(b) For L/d=10 (deep beam),
A

EI
L

ρ
ω 25721.3=                                                 

     (46) 
 
The summary of results for different support conditions is 
shown in Table1 and Table 2. 

 
 
 
 

TABLE 1 
DERIVED NATURAL FREQUENCY FORMULAE FOR VARIOUS SUPPORT CONDITIONS 

 
Support 
Condition 

Natural Frequency in rad/s 

( x  𝑳𝟐�𝑬𝑰
𝝆𝑨

 ) 

Frequency Ratio 
𝑪𝝎 = 𝝎

𝝎𝒃
 

 
Unified Beam, 𝝎 Timoshenko 

Beam, 𝝎𝒃 
(Exact)** 

Clamped-
Free 

( )λΦ++Φ+ 8483.586069.693240.94802.12  3.5158 ( )λΦ++Φ+ 76.463.575.001.1  

Hinged-
Hinged 

( )( )λ16801201 +Φ+  9.8776 ( )λ2191.172299.1)1( +Φ+  

Clamped-
Hinged 

( )λΦ++Φ+ 76.1100389.23199525.1641391.242  15.420 ( )λΦ++Φ+ 28.4675.969.002.1  

Clamped-
Clamped 

( )λΦ++Φ+ 2688044809632.1089321.516  22.373 ( )λΦ++Φ+ 70.5395.822.003.1  

 
Legend:  
ρ = Density of material (kg/m3), I = Moment of Inertia of cross-section (m4), A = Area of Cross-section (m2), E = Modulus of elasticity (N/m2), L = Length 

of beam (m) 
ω = frequency from unified element solution 
ω

𝑏
= frequency from exact (or classical solution) 

** Reddy [13] obtained exact solutions for Timoshenko beam for L/d=100, including the effect of rotary inertia   
 
Note that the frequency ratio, Cω, is defined as the ratio of 
the frequency obtained from the unified element solution to 
that obtained from the exact (or classical) solution.
. 
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TABLE 2 
COMPUTED NATURAL FREQUENCIES FOR VARIOUS SUPPORT CONDITIONS 

Span/depth 
(L/d) 
Ratio 

Natural Frequency in rad/s 

( x  𝑳𝟐�𝑬𝑰
𝝆𝑨

 ) 

Clamped-Free Hinged-Hinged Clamped-Hinged Clamped-Clamped 
With RI Without RI With RI Without RI With RI Without RI With RI Without RI 

10 
(Deep beam) 

3.3312 3.5721 9.1259 11.1176 13.6141 15.7190 19.9256 22.8079 

100 
(Slender beam) 

3.5308 3.5331 10.9382 10.9561 15.5450 15.5624 22.7139 22.7369 

 
Legend:  
RI = Rotary Inertia, ρ = Density of material (kg/m3), I = Moment of Inertia of cross-section (m4), A = Area of Cross-section (m2), E = Modulus of elasticity 

(N/m2), L = Length of beam (m) 

 
 
 
 
 
The unified element solutions are compared with the exact 
solutions provided by Reddy [13].  
Assumed parameters: Poisson’s ratio, v=0.25; shear 
coefficient, k=5/6, Span-to-depth (L/d) ratio = 100 

Therefore
2

3

7








=
L

d
λ  ,  

2
32

12








==Φ
L

d

GkAL

EI
 

 
The results are presented in Table 3. 

 
TABLE 3 

COMPARISON OF UNIFIED ELEMENT SOLUTION WITH EXACT SOLUTION FOR VARIOUS SUPPORT 
CONDITIONS 
 
Support Condition 

Natural Frequency, 𝝎, in rad/s 

( x  𝑳𝟐�𝑬𝑰
𝝆𝑨

 ) 

% Difference 
 

Unified Beam Solution Timoshenko Beam 
(Exact Solution) 

Clamped-Free 3.5308 3.5158 0.42 
Hinged-Hinged 9.9392 9.8776 0.62 
Clamped-Hinged 15.5450 15.420 0.80 
Clamped-Clamped 22.7139 22.373 1.50 
 
Legend:  
ρ = Density of material (kg/m3), I = Moment of Inertia of cross-section (m4), A = Area of Cross-section (m2), E = Modulus of elasticity (N/m2), L = Length 

of beam (m) 

 
 
The relationship between the span-to-depth (L/d) ratio and 
the natural frequency ratio, 𝐶𝜔, is presented in Table 4. 

2

3

7








=
L

d
λ

,  

2
32

12








==Φ
L

d

GkAL

EI  
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TABLE 4 
RELATIONSHIP BETWEEN SPAN/DEPTH (L/d) RATIO AND THE NATURAL FREQUENCY RATIO,  𝑪𝝎 

Span/depth 
(L/d) 
Ratio 

Frequency Ratio 
𝑪𝝎 = 𝝎

𝝎𝒃
 

 
Clamped-Free 

 

( )λΦ++Φ+ 76.463.575.001.1  

Clamped-Hinged 
 

( )λΦ++Φ+ 28.4675.969.002.1  

With RI Without RI With RI Without RI 
100 1.006 1.005 1.011 1.010 
80 1.006 1.005 1.012 1.010 
50 1.008 1.005 1.015 1.010 
40 1.010 1.006 1.018 1.011 
30 1.013 1.006 1.024 1.011 
20 1.024 1.008 1.041 1.013 
10 1.079 1.016 1.140 1.020 
5 1.278 1.049 1.591 1.050 
4 1.411 1.073 1.959 1.072 

 
Legend:  
RI = Rotary Inertia 
ω = frequency from unified element solution 
ω

𝑏
= frequency from exact (or classical solution) 

 
 
The results of a comparative analysis of the effect of higher 
vibration modes using Timoshenko model and the 
proposed unified beam model for different support 
conditions are presented in Table 5. The unified element 
results are compared with the analytical results obtained by 
Leszek [15]. 
The following parameters were assumed [15]: 
Modulus of elasticity, E= 2.1x1011 N/m2 

Poisson’s ratio, v = 0.25 
Density of beam material, ρ = 7800 kg/m3 
Shear correction factor, k = 5/6 
Length of beam, L = 1.0 m 
Width of beam section, b = 0.02 m 
Depth of beam section, d = 0.08 m 

 
 

TABLE 5 
COMPUTED NATURAL FREQUENCIES OF CLAMPED-FREE BEAM 

Mode of Vibration Natural Frequency in rad/s 
Unified Element Solution Timoshenko Beam 

(Analytical Solution) With Shear Only % Difference With Shear and RI % Difference 
1 159 0.00 159 0.00 159 
2 995 0.10 994 0.00 994 
3 2777 0.58 2769 0.29 2761 
4 5412 1.16 5383 0.62 5350 
5 8882 1.61 8806 0.74 8741 

 
Legend:  
RI = Rotary Inertia 
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Table 2 demonstrates that the effect of rotary inertia is to 
reduce the natural frequency of vibration of beams for all 
support conditions. The effect is more pronounced in deep 
beams compared to slender beams (about 6.7% and 0.07% 
reduction respectively for a clamped-free support). 
The results in Table 3 show the accuracy of the unified 
element model. For a one-element mesh, the difference 
from the exact solution is in the order of 0.42% for a 
clamped-free support. It is also observed that the unified 

element solution generally yields upper-bound values of 
the natural frequency. 
Table 4 shows that, in general, the frequency ratio increases 
as the span-to-depth ratio decreases for all support 
conditions.  
Table 5 shows that there is a convergence of the unified 
element and exact solutions at lower modes of vibration. 
The divergence becomes more pronounced at higher 
modes. Also the natural vibration frequency is less sensitive 
to rotary inertia at lower modes.  

 
 
9  CONCLUSION 

In this paper, the energy separation principle was 
successfully applied in the vibration analysis of 
Timoshenko beam. The proposed unified finite element 
model incorporates the effects of bending, shear 
deformation and rotary inertia by employing a bending-
shear interaction factor. Explicit formulae for natural 
frequencies of Timoshenko beams based on the proposed 
unified element have been developed for different support 
conditions. 

The results show high accuracy and efficiency of the 
proposed unified element model in calculating the natural 
vibration frequencies of beams for different boundary 
conditions. The unified element solution generally yields 
upper-bound values of the natural frequency. Also, the 
frequency ratio increases as the span-to-depth ratio 
decreases. The results suggest that shear deformation 
contributes significantly to the natural vibration frequency 
for span-to-depth ratio less than 5, and should therefore be 
accounted for in design of such beams. 
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